extension | φ:Q→Out N | d | ρ | Label | ID |
(C7×C4○D4)⋊1C22 = D7×C4○D8 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4):1C2^2 | 448,1220 |
(C7×C4○D4)⋊2C22 = D8⋊10D14 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4):2C2^2 | 448,1221 |
(C7×C4○D4)⋊3C22 = D8⋊15D14 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 4+ | (C7xC4oD4):3C2^2 | 448,1222 |
(C7×C4○D4)⋊4C22 = D8⋊11D14 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4):4C2^2 | 448,1223 |
(C7×C4○D4)⋊5C22 = D7×C8⋊C22 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 56 | 8+ | (C7xC4oD4):5C2^2 | 448,1225 |
(C7×C4○D4)⋊6C22 = D8⋊5D14 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8+ | (C7xC4oD4):6C2^2 | 448,1227 |
(C7×C4○D4)⋊7C22 = D8⋊6D14 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8- | (C7xC4oD4):7C2^2 | 448,1228 |
(C7×C4○D4)⋊8C22 = D28.32C23 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8+ | (C7xC4oD4):8C2^2 | 448,1288 |
(C7×C4○D4)⋊9C22 = D28.34C23 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8+ | (C7xC4oD4):9C2^2 | 448,1290 |
(C7×C4○D4)⋊10C22 = D7×2+ 1+4 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 56 | 8+ | (C7xC4oD4):10C2^2 | 448,1379 |
(C7×C4○D4)⋊11C22 = D14.C24 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8- | (C7xC4oD4):11C2^2 | 448,1380 |
(C7×C4○D4)⋊12C22 = D7×2- 1+4 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8- | (C7xC4oD4):12C2^2 | 448,1381 |
(C7×C4○D4)⋊13C22 = D28.39C23 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8+ | (C7xC4oD4):13C2^2 | 448,1382 |
(C7×C4○D4)⋊14C22 = C7×D4○D8 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4):14C2^2 | 448,1359 |
(C7×C4○D4)⋊15C22 = C7×D4○SD16 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4):15C2^2 | 448,1360 |
(C7×C4○D4)⋊16C22 = C2×D4⋊D14 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | | (C7xC4oD4):16C2^2 | 448,1273 |
(C7×C4○D4)⋊17C22 = C2×D4.8D14 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 224 | | (C7xC4oD4):17C2^2 | 448,1274 |
(C7×C4○D4)⋊18C22 = C28.C24 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4):18C2^2 | 448,1275 |
(C7×C4○D4)⋊19C22 = C2×D7×C4○D4 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | | (C7xC4oD4):19C2^2 | 448,1375 |
(C7×C4○D4)⋊20C22 = C2×D4⋊8D14 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | | (C7xC4oD4):20C2^2 | 448,1376 |
(C7×C4○D4)⋊21C22 = C2×D4.10D14 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 224 | | (C7xC4oD4):21C2^2 | 448,1377 |
(C7×C4○D4)⋊22C22 = C14.C25 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4):22C2^2 | 448,1378 |
(C7×C4○D4)⋊23C22 = C14×C4○D8 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 224 | | (C7xC4oD4):23C2^2 | 448,1355 |
(C7×C4○D4)⋊24C22 = C14×C8⋊C22 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | | (C7xC4oD4):24C2^2 | 448,1356 |
(C7×C4○D4)⋊25C22 = C7×D8⋊C22 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4):25C2^2 | 448,1358 |
(C7×C4○D4)⋊26C22 = C14×2+ 1+4 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | | (C7xC4oD4):26C2^2 | 448,1389 |
(C7×C4○D4)⋊27C22 = C14×2- 1+4 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 224 | | (C7xC4oD4):27C2^2 | 448,1390 |
(C7×C4○D4)⋊28C22 = C7×C2.C25 | φ: trivial image | 112 | 4 | (C7xC4oD4):28C2^2 | 448,1391 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C7×C4○D4).1C22 = D7×C4≀C2 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 56 | 4 | (C7xC4oD4).1C2^2 | 448,354 |
(C7×C4○D4).2C22 = C42⋊D14 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).2C2^2 | 448,355 |
(C7×C4○D4).3C22 = D4⋊4D28 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 56 | 4+ | (C7xC4oD4).3C2^2 | 448,356 |
(C7×C4○D4).4C22 = M4(2).22D14 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).4C2^2 | 448,357 |
(C7×C4○D4).5C22 = C42.196D14 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).5C2^2 | 448,358 |
(C7×C4○D4).6C22 = M4(2)⋊D14 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).6C2^2 | 448,359 |
(C7×C4○D4).7C22 = D4.9D28 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 4- | (C7xC4oD4).7C2^2 | 448,360 |
(C7×C4○D4).8C22 = D4.10D28 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).8C2^2 | 448,361 |
(C7×C4○D4).9C22 = D8⋊5Dic7 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).9C2^2 | 448,730 |
(C7×C4○D4).10C22 = D8⋊4Dic7 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).10C2^2 | 448,731 |
(C7×C4○D4).11C22 = D28⋊18D4 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 56 | 8+ | (C7xC4oD4).11C2^2 | 448,732 |
(C7×C4○D4).12C22 = M4(2).D14 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8+ | (C7xC4oD4).12C2^2 | 448,733 |
(C7×C4○D4).13C22 = M4(2).13D14 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8- | (C7xC4oD4).13C2^2 | 448,734 |
(C7×C4○D4).14C22 = D28.38D4 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8- | (C7xC4oD4).14C2^2 | 448,735 |
(C7×C4○D4).15C22 = D28.39D4 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8+ | (C7xC4oD4).15C2^2 | 448,736 |
(C7×C4○D4).16C22 = M4(2).15D14 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8+ | (C7xC4oD4).16C2^2 | 448,737 |
(C7×C4○D4).17C22 = M4(2).16D14 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 224 | 8- | (C7xC4oD4).17C2^2 | 448,738 |
(C7×C4○D4).18C22 = D28.40D4 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8- | (C7xC4oD4).18C2^2 | 448,739 |
(C7×C4○D4).19C22 = 2+ 1+4⋊D7 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 56 | 8+ | (C7xC4oD4).19C2^2 | 448,775 |
(C7×C4○D4).20C22 = 2+ 1+4.D7 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8- | (C7xC4oD4).20C2^2 | 448,776 |
(C7×C4○D4).21C22 = 2- 1+4⋊D7 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8+ | (C7xC4oD4).21C2^2 | 448,779 |
(C7×C4○D4).22C22 = 2- 1+4.D7 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8- | (C7xC4oD4).22C2^2 | 448,780 |
(C7×C4○D4).23C22 = D8.10D14 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 224 | 4- | (C7xC4oD4).23C2^2 | 448,1224 |
(C7×C4○D4).24C22 = SD16⋊D14 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8- | (C7xC4oD4).24C2^2 | 448,1226 |
(C7×C4○D4).25C22 = D7×C8.C22 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8- | (C7xC4oD4).25C2^2 | 448,1229 |
(C7×C4○D4).26C22 = D56⋊C22 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8+ | (C7xC4oD4).26C2^2 | 448,1230 |
(C7×C4○D4).27C22 = C56.C23 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8+ | (C7xC4oD4).27C2^2 | 448,1231 |
(C7×C4○D4).28C22 = D28.44D4 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 224 | 8- | (C7xC4oD4).28C2^2 | 448,1232 |
(C7×C4○D4).29C22 = D28.33C23 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 8- | (C7xC4oD4).29C2^2 | 448,1289 |
(C7×C4○D4).30C22 = D28.35C23 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 224 | 8- | (C7xC4oD4).30C2^2 | 448,1291 |
(C7×C4○D4).31C22 = C7×D4⋊4D4 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 56 | 4 | (C7xC4oD4).31C2^2 | 448,861 |
(C7×C4○D4).32C22 = C7×D4.8D4 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).32C2^2 | 448,862 |
(C7×C4○D4).33C22 = C7×D4.9D4 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).33C2^2 | 448,863 |
(C7×C4○D4).34C22 = C7×D4.10D4 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).34C2^2 | 448,864 |
(C7×C4○D4).35C22 = C7×Q8○D8 | φ: C22/C1 → C22 ⊆ Out C7×C4○D4 | 224 | 4 | (C7xC4oD4).35C2^2 | 448,1361 |
(C7×C4○D4).36C22 = D4.3D28 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).36C2^2 | 448,675 |
(C7×C4○D4).37C22 = D4.4D28 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | 4+ | (C7xC4oD4).37C2^2 | 448,676 |
(C7×C4○D4).38C22 = D4.5D28 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 224 | 4- | (C7xC4oD4).38C2^2 | 448,677 |
(C7×C4○D4).39C22 = C56.93D4 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).39C2^2 | 448,678 |
(C7×C4○D4).40C22 = C56.50D4 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).40C2^2 | 448,679 |
(C7×C4○D4).41C22 = C2×D4⋊2Dic7 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | | (C7xC4oD4).41C2^2 | 448,769 |
(C7×C4○D4).42C22 = (D4×C14)⋊9C4 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).42C2^2 | 448,770 |
(C7×C4○D4).43C22 = D7×C8○D4 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).43C2^2 | 448,1202 |
(C7×C4○D4).44C22 = C56.49C23 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).44C2^2 | 448,1203 |
(C7×C4○D4).45C22 = D4.11D28 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).45C2^2 | 448,1204 |
(C7×C4○D4).46C22 = D4.12D28 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | 4+ | (C7xC4oD4).46C2^2 | 448,1205 |
(C7×C4○D4).47C22 = D4.13D28 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 224 | 4- | (C7xC4oD4).47C2^2 | 448,1206 |
(C7×C4○D4).48C22 = C2×Q8.Dic7 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 224 | | (C7xC4oD4).48C2^2 | 448,1271 |
(C7×C4○D4).49C22 = C28.76C24 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).49C2^2 | 448,1272 |
(C7×C4○D4).50C22 = C2×D4.9D14 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 224 | | (C7xC4oD4).50C2^2 | 448,1276 |
(C7×C4○D4).51C22 = C14×C4≀C2 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | | (C7xC4oD4).51C2^2 | 448,828 |
(C7×C4○D4).52C22 = C7×C42⋊C22 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).52C2^2 | 448,829 |
(C7×C4○D4).53C22 = C7×C8○D8 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | 2 | (C7xC4oD4).53C2^2 | 448,851 |
(C7×C4○D4).54C22 = C7×C8.26D4 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).54C2^2 | 448,852 |
(C7×C4○D4).55C22 = C7×D4.3D4 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).55C2^2 | 448,879 |
(C7×C4○D4).56C22 = C7×D4.4D4 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 112 | 4 | (C7xC4oD4).56C2^2 | 448,880 |
(C7×C4○D4).57C22 = C7×D4.5D4 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 224 | 4 | (C7xC4oD4).57C2^2 | 448,881 |
(C7×C4○D4).58C22 = C14×C8.C22 | φ: C22/C2 → C2 ⊆ Out C7×C4○D4 | 224 | | (C7xC4oD4).58C2^2 | 448,1357 |
(C7×C4○D4).59C22 = C14×C8○D4 | φ: trivial image | 224 | | (C7xC4oD4).59C2^2 | 448,1350 |
(C7×C4○D4).60C22 = C7×Q8○M4(2) | φ: trivial image | 112 | 4 | (C7xC4oD4).60C2^2 | 448,1351 |